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Abstract. Age estimation is important for management of fisheries and wildlife 1 

populations, but techniques such as growth ring counts are often impossible or unreliable.  An 2 

alternative is to estimate age from growth models using Bayesian inference.  However, 3 

individual variation in growth parameters needs to be incorporated into these models for them 4 

to generate realistic prediction intervals.  For long-lived ectotherms, it is also important that 5 

models allow for changes in growth at sexual maturity, and that the growth models are 6 

combined with prior distributions reflecting realistic age structures.  We describe how a 7 

hierarchical biphasic growth model fitted to a long-term data set of carapace length 8 

measurements for North American snapping turtles was combined with prior age 9 

distributions generated from survival estimates for the same population.  The model was used 10 

to generate individual posterior age distributions for turtles captured on two or more 11 

occasions, and also for hypothetical turtles of any length that were measured only once.  12 

Posterior age distributions for hypothetical turtles were very uncertain at any size due to 13 

individual variation in growth parameters, and also very sensitive to the prior used.  Using the 14 

most realistic prior, the 95% prediction intervals for large hypothetical turtles (38 mm male 15 

or 31 cm female) ranged from about 25-170 years with a median of about 70 years.  Posterior 16 

age distributions for turtles first measured when < 24 cm were insensitive to the choice of 17 

prior, and estimation precision was usually greatly improved by individual growth 18 

information obtained from recaptures.  For example, the 95% prediction interval for a 19 

hypothetical 10-cm turtle ranged from 2-14 years using the most realistic prior, whereas the 20 

ages of small (< 24 cm) turtles that were recaptured at least once could usually be estimated 21 

to within 1-3 years.  Similar models could be applied to any data set where measurements and 22 

survival data were collected from a large sample of marked individuals, and could potentially 23 

be extended to incorporate data on other age indicators.  24 
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 27 

INTRODUCTION 28 

 29 

 Reliable age estimation is important for management of fisheries (Haddon et al. 2011) 30 

and wildlife populations (Lyons et al. 2012).  Models used to manage populations often rely 31 

on animals being assigned to age classes (Caswell 2001; Williams et al. 2002).  Age 32 

estimates are also important for advocacy purposes when attempting to conserve long-lived 33 

species, as long life spans intuitively illustrate the value of the animals and their potential 34 

sensitivity to impacts (e.g. Congdon et al. 1993; Congdon et al. 1994; Towns et al. 2007).  35 

 Ages of animals can be known precisely if they can be marked a birth, but data are 36 

rarely collecting over the lifetimes of long-lived species (Medica et al. 2012).  There are 37 

numerous methods for inferring age based on anatomical features, but these may be 38 

impossible to use on live animals or may suffer from various degrees of unreliability (Eaton 39 

and Link 2011; Lyons et al. 2012).  For example, although growth ring counts have been used 40 

to age turtles in numerous studies, evaluations of the technique have often shown it to be 41 

unreliable, particular in mature animals (Wilson et al. 2003). 42 

 The alternative is to infer age from size based on fitted growth models.  Such models 43 

can be fitted to measurements taken from known-age animals, but can also be fitted to 44 

successive measurements from recaptured animals of unknown age (Fabens 1965).  Statistical 45 

problems associated with fitting models to recapture data (Sainsbury 1980) have been 46 

overcome by estimating individual variation in growth parameters, most recently using 47 

Bayesian hierarchical modeling (Zhang et al. 2009).  Individual variation is particularly 48 

relevant to age estimation, because individuals of the same age can potentially vary greatly in 49 
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size.  Hierarchical modeling allows this variation to be accounted for when estimating age 50 

based on size data. 51 

 Eaton and Link (2011) used a Bayesian hierarchical version of the von Bertalanffy 52 

(VB) growth model to infer age distributions for the central African dwarf crocodile 53 

(Osteolaemus tetraspis) as a function of length.  Their modeling approach combined 54 

inferences from recapture data for unknown-age animals with data from known-age animals, 55 

and generated posterior age distributions that accounted for individual variation in growth 56 

parameters as well as uncertainty in parameter estimation.  Here we use a similar approach to 57 

obtain age distributions as a function of size from a long-term data set for North American 58 

snapping turtles (Chelydra serpentina), but extend the approach in two ways. 59 

 First, we use a modification of the VB model that is biphasic as well as incorporating 60 

individual variation in growth parameters.  For animals with indeterminate growth, 61 

reductions in growth are often expected at sexual maturity due to the demands of 62 

reproduction, meaning different functions are needed to describe pre- and post-maturity 63 

growth (Day and Taylor 1997).  Age estimates from uniphasic growth models may therefore 64 

be biased, particularly in long-lived ectotherms with slow maturity.  That is, ages will 65 

overestimated if based largely on data for mature animals, and underestimated if based 66 

mainly on data for juveniles.  However, methods have been developed for fitting Bayesian 67 

hierarchical growth models that allow a change in growth rate at a critical age (Quince et al. 68 

2008; Alós et al. 2010a,b) or critical size (Armstrong & Brooks 2013). 69 

 Second, we combine our growth model with prior information on the expected age 70 

distribution.  Although prior distributions must be specified in Bayesian inference, 71 

“uninformative priors” are typically used in the absence of information (Link and Barker 72 

2010).  It is questionable, however, whether any prior distribution for age structure could be 73 

truly uninformative.  Eaton and Link (2011) used a uniform distribution as an uninformative 74 
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prior for dwarf crocodile age, meaning crocodiles were assumed to have equal probability of 75 

being any age between zero and the maximum specified.  This is an unrealistic assumption 76 

for most populations, and would be typically result in ages being overestimated to some 77 

extent.  We nominated informative prior distributions for age based on independent survival 78 

estimates from our population, and assessed the sensitivity of age inference to the prior for 79 

turtles of different sizes.     80 

 81 

METHODS 82 

 83 

Species and Study Area 84 

 85 

North American snapping turtles are omnivorous predators and scavengers that live in 86 

lakes, ponds and slow-moving rivers (Steyermark et al. 2008).  Our data were collected in the 87 

Wildlife Research Area (45º35’N, 78 30’W) of Algonquin Provincial Park, near the northern 88 

edge of the species’ range.  Female snapping turtles in this area predictably start egg laying 89 

when their straight-line carapace length reaches 24 cm (Armstrong and Brooks 2013). Mature 90 

females lay one clutch annually, with these clutches buried in sandy soil or gravel near water 91 

(Congdon et al. 2008).  Brooks et al. (1997) tested the reliability of growth ring counts in 92 

Algonquin Park snapping turtles by analyzing changes in counts between recaptures.  They 93 

found the counts to be an inaccurate indicator of the number of years between captures for 94 

juveniles, and to be completely uninformative for mature turtles.   95 

 96 

97 
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Data Set 98 

 99 

The data set consisted of 1,996 straight-line carapace length measurements taken from 100 

317 individually marked turtles from 1972-2005.  Nesting females were usually found by 101 

patrolling known nest areas daily from late May to early July, and were caught by hand once 102 

their clutches were buried.  This patrolling generally resulted in annual recaptures of mature 103 

females.  Mature males and juveniles were captured less regularly via trapping or 104 

opportunistic encounters.  Mature turtles can be sexed based on the length of pre-cloacal tail 105 

section in relation to the length of the posterior lobe of the plastron (Ernst, 2008), but 106 

juveniles cannot be sexed externally.  Most (288) of the turtles in the data set were of known 107 

sex but unknown age, but there were smaller samples of individuals of known sex and age 108 

(5), unknown sex but known age (19), and unknown sex and age (5).  Turtles of unknown  109 

age were only included if they were measured at least twice.  See Armstrong and Brooks 110 

(2013) for further details.   111 

 112 

Growth Model 113 

 114 

Armstrong and Brooks (2013) fitted a baseline hierarchical VB model to the above 115 

data set, then used the Deviance Information Criterion (DIC) to compare its predictive value 116 

to that of alternative models.  The baseline model was similar to the VB model fitted by 117 

Eaton and Link (2011) in that it incorporated random individual variation as well as sex 118 

differences in parameters, and integrated inferences from first measurements of known-aged 119 

animals with those from recapture data.  Minor differences include the use of a VB function 120 

for first measurements as well as recaptures (Eaton and Link [2011] used a linear function for 121 

the former, as the VB function was expected to approximate linearity up to the first 122 
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measurements), the substitution of ki/ai for ki in the VB function (see Armstrong and Brooks 123 

[2013] for rationale), and the modeling of individual variation and random error as Normal 124 

rather than Gamma processes.  Comparison to alternative models gave strong evidence that 125 

individual variation in parameters should be retained, and that sex-specific biphasic growth 126 

should be incorporated (Armstrong and Brooks 2013).   127 

Under the best model, which received unambiguous support, the average growth of 128 

males and females is similar until they reach 24 cm, after which females change trajectory 129 

toward a smaller asymptotic length.  For males the model takes the form  130 

 Lij = ai(1-exp(-ki/ai(tj-t0)))+εij (1) 131 

for first measurements, and 132 

 Lij = ai(ai-Li,j-1)(1-exp(-ki/ai(yj-yj-1)))+εij (2) 133 

for recaptures, where Lij is the expected length of individual i at measurement j, ai is the 134 

individual’s asymptotic length, ki determines its initial growth rate, tj is its age at 135 

measurement j, t0 is the theoretical age at which its length would be zero, y is the year of 136 

measurement, and εij is random error.  Individual variation in parameters ai and ki was taken 137 

to be normally and log-normally distributed respectively, with means μa and μk and variances 138 

σ2
a and σ2

k, and εij was taken to be normally distributed with mean 0 and variance σ2
e.   139 

For females > 24 cm the model takes the form 140 

 Lij = ai +βa-(ai+βa-24)exp(-ki/(ai+βa)(tj-t'i))+εij,  (3) 141 

for first measurements, and 142 

 Lij = ai +βa-(ai+βa-24)exp(-ki/(ai+βa)(yj-y'i))+εij,  (4) 143 

for recaptures, where βa is the change in the asymptotic size parameter, and t’ and y’ are age 144 

and time at which 24 cm was reached.  The values of t'i and y'i are estimated as part of the 145 

modeling, with their expected values given by 146 

 t'i = ln(1-24/ai)(ai/-ki)+t0 (5) 147 
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and 148 

 y'i = ln[(ai-24)/(ai-Li,j-1)](ai/-ki)+yj-1. (6) 149 

Consequently, in an individual MCMC iteration a recaptured female’s length at measurement 150 

j could be predicted by Equation 2, Equation 4, or a combination of the two (see WinBUGS 151 

code in Supplement).  The model can be used to generate probability distributions for 152 

carapace length as a function of age and sex (Armstrong and Brooks 2013, Fig. 2).   153 

 154 

Age Estimation 155 

 156 

From Bayes’ theorem (Link and Barker 2010), the probability of an individual being a 157 

particular age (z) based on its length is  158 

    
 








Max

x
xxij

zzij
ijz

ttL

ttL
Lt

1

)Pr(|Pr

)Pr(|Pr
|Pr   (6) 159 

where Pr(Lij |tz) is the likelihood (the probability of the individual being that length at age z 160 

based on the model), and Pr(tz) is the prior probability of being that age.  The discrete form of 161 

the theorem is appropriate for our scenario because turtles are measured at about the same 162 

time of year, so their ages fall into whole numbers of years.  Because the model generates 163 

individual distributions for parameters ai and ki, it is possible to generate individual posterior 164 

age distributions that exploit the information gained from repeated measurements.  165 

Alternatively, posterior distributions can be generated for hypothetical individuals of any 166 

length by sampling ai and ki from distributions incorporating the range of individual 167 

variation.  Eaton and Link (2011) only attempted the latter, as their data set contained only 168 

five observations of animals captured more than twice.  In contrast, most of the 317 turtles in 169 

our data set were captured more than twice, and 155 were captured at least 5 times.  We 170 
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therefore used the model above to estimate the age at initial capture for all unknown-age 171 

turtles in our data set as well as ages of hypothetical males and females of various lengths. 172 

 Ages are estimated by inserting unknown ages in Equations 1 and 3, and modeling 173 

these unknown ages as missing values (Link and Barker 2010).  However, the “cut” function 174 

in WinBUGS (Spiegelhalter et al. 2007) is applied to all parameters in the relevant lines of 175 

code (Supplement) to prevent the parameter estimation being influenced.  Bayes’ theorem is 176 

implemented by assigning a prior distribution to each unknown age.  It is reasonable to 177 

assume that survival probability is constant with respect to size and age among mature 178 

snapping turtles (Brooks et al. 1988), meaning the age distribution among these large animals 179 

is expected to approximate the negative binomial distribution 180 

t ~ NB(1,1-S) 181 

where S is the annual survival probability.  This probability was estimated to be 0.966 for 182 

large (> 24 cm) snapping turtles in Algonquin Park (Galbraith and Brooks 1987), whereas 183 

annual survival of smaller turtles was estimated to be 0.754 (Brooks et al. 1988).   184 

We therefore generated separate age estimates using negative binomial priors based 185 

on these two survival probabilities, and compared these to assess the sensitivity to the choice 186 

of prior.  Although it would be desirable to construct an overall age distribution based on 187 

both survival probabilities, this would require using our growth model to infer age, meaning 188 

the prior would not be based on independent data.  We compared the estimates generated 189 

using the two negative binomial priors to those generated using the uniform prior    190 

t ~ U(0,500) 191 

 which was expected to give unrealistically high age estimates for at least the larger animals. 192 

 We added the lines of code generating age estimates to the WinBUGS code used to fit 193 

the growth model (Supplement), and ran the whole model simultaneously to allow covariance 194 

in parameter estimation to be accounted for in age estimation.  We used uninformative priors 195 
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for all parameters and hyperparameters in the growth model (Armstrong and Brooks 2013), 196 

and generated posterior distributions from 500,000 MCMC iterations after a burn-in of 197 

10,000 iterations. 198 

 199 

RESULTS 200 

 201 

Asymptotic carapace length was estimated to have a median value of 38.2 cm in 202 

males, and to fall between 35.6 and 40.8 cm in 95% of individuals.  For females the estimated 203 

median was 30.9, with 95% of individuals falling between 28.3 and 33.5 cm.  The largest 204 

individuals recorded were 40.7 cm and 35.7 cm for males and females respectively. 205 

If a negative binomial prior with 0.966 annual survival is used (NB[1,0.034]), as is 206 

most realistic for large turtles, the median predicted age of a hypothetical 38 cm male is 73 207 

years (95% prediction interval 27-173) and the median predicted age of a hypothetical 31 cm 208 

female is 65 years (23-162) (Fig. 1).  These rise to 299 years (76-490) and 288 years (63-489) 209 

when the uniform prior is used (U[0,500]), and fall to 19 (8-37) and 17 (7-34) when a 210 

negative binomial prior based on the juvenile survival rate is used (NB[1,0.246]).  A 211 

hypothetical 24 cm turtle (the size when females begin egg laying) of either sex has a median 212 

predicted age of 25 years (8-70) when NB(1, 0.034) is used as the prior.  This rises to 36 213 

years (9-126) when U(0,500) is used, and falls to 11 years (6-24) when NB(1, 0.246) is used.  214 

A hypothetical 10 cm turtle has a median predicted age of 6 years (2-14) under the most 215 

realistic prior of NB(1,0.246).  This rises to 10 years (3-28) using NB(1,0.034) and 11 years 216 

(3-37) using U(0,500). 217 

Posterior age distributions for real turtles (Fig. 2) were quite different from those for 218 

hypothetical turtles, with the degree of difference depending on the prior used and the size of 219 

the turtle.  The credible intervals for ages of large turtles corresponded fairly closely to the 220 
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prediction intervals for hypothetical turtles when the uniform prior was used, but were high in 221 

relation to the prediction intervals for hypothetical turtles when negative binomial priors were 222 

used.  For example, when NB(1,0.034) was used as the prior, the estimates for the six males 223 

near 38 cm (37-39) averaged 172 years, compared to the median 73 years for a hypothetical 224 

38-cm male, and the estimates for the 32 females near 31 cm (30-32) averaged 127 years, 225 

compared to the median 65 years for a hypothetical 31-cm female.  The credible intervals for 226 

ages of small turtles fitted the predicted age distributions for hypothetical turtles when 227 

NB(1,0.256) was used as the prior, but were lower and much tighter than the distributions for 228 

hypothetical turtles when the other priors were used. 229 

The choice of prior had less influence on age estimates for real turtles than those for 230 

hypothetical turtles (Fig. 3), as is to be expected given that the former exploit additional data 231 

on individual-specific growth parameters.  The influence of the prior on individual age 232 

estimates was greatest for large turtles, and had negligible effect for turtles first measured 233 

when < 24 cm (Fig. 3).  Among large turtles, the influence of the prior was highest for turtles 234 

estimated to be atypically old for their size (Fig. 2).   The influence of the prior was unrelated 235 

to the number of captures, but depended on the interval between the first and last capture (i.e. 236 

had greater influence if this interval was short). 237 

Using age estimates for individual turtles, it is possible to infer individual growth 238 

histories in relation to age (Fig. 4).  However, such histories are hypotheses that are highly 239 

sensitive to estimation uncertainty, particular among the larger turtles. 240 

 241 

242 
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DISCUSSION 243 

 244 

 Our results illustrate that it is possible to combine a hierarchical biphasic growth 245 

model with informative priors to obtain posterior age distributions as a function of size, either 246 

for hypothetical individuals measured once or for recaptured individuals with two or more 247 

measurements.  However, the results also illustrate the inherent uncertainty involved in 248 

attempting to infer age from size, mainly due to individual variation in growth.  Uncertainty 249 

in parameter estimation and model selection will also be important in many cases.  However, 250 

the large sample sizes for our case study meant that the standard errors for mean parameter 251 

values were quite small in relation to the estimated individual variation, and the choice of 252 

model was also unambiguous (Armstrong and Brooks 2013).   253 

 Our results support the belief of many herpetologists (e.g. Carr and Goodman 1970; 254 

Halliday and Verrell 1988; Congdon et al. 2001) that size is weakly related to age.  Congdon 255 

et al. (2001) state that the relationship between size and age may be strong in juveniles, 256 

weaker in adults, and become weakest or absent in the oldest individuals.  This trend will 257 

occur in any species where animals approach an asymptotic size that varies among 258 

individuals, as the effect of the individual variation will progressively overwhelm the effect 259 

of age as animals get larger.  Our results suggest there is great uncertainty in age estimates 260 

even for small turtles if they are only captured once.  For example, although the median age 261 

prediction for a 10-cm juvenile is more than twice that of a 5-cm juvenile, there is huge 262 

overlap in the prediction intervals, and these intervals even overlap with those for mature (> 263 

24 cm) individuals.  However, there was generally much tighter estimation for juveniles that 264 

were recaptured.  The initial ages of these animals could be estimated to within 1-3 years as 265 

long as they had grown at least 3 cm between the first and last capture.  266 
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 Our results also show the importance of choosing appropriate priors and assessing 267 

sensitivity to the choice of prior.  Eaton and Link (2011) compared uniform priors with 268 

different maxima, and concluded that the lower limits of prediction intervals were robust to 269 

the choice of prior.  Although we also found lower limits to be less affected than medians or 270 

upper limits, even the lower limits differed between the uniform and negative binomial 271 

priors, and between the two different negative binomial priors reflecting adult versus juvenile 272 

survival rates.  We did find that posterior distributions generated using the two negative 273 

binomial priors were identical for recaptured turtles first measured when < 24 cm.  We 274 

therefore suggest that the prior based on the adult survival rate [NB(1,034)] is appropriate for 275 

all recaptured turtles.  The appropriate prior for age estimates of hypothetical turtles is less 276 

straight forward because the posterior distribution is sensitive to the prior at all sizes.  277 

However, reasonable inferences can probably be made by focusing on NB(1,034) for large 278 

turtles and NB(1,0.256) for small turtles, and the combination of the two for intermediate 279 

sizes.  The ideal prior would be the expected overall age distribution based on age-specific 280 

survival and fecundity estimates (Schwartz and Runge 2009), but because ages of most turtles 281 

are unknown in our study population, it is impossible to obtain these estimates independently 282 

of the growth model. 283 

  Although size-based age estimation is particularly difficult for large turtles, this is 284 

where the information can have most impact, both because it is impossible to age old turtles 285 

from growth rings and because age estimates for old animals are valuable for advocacy.  The 286 

North American snapping turtle is a good example of a species needing such advocacy, as 287 

their populations are subject to road mortality, harvesting, and persecution (Brooks et al. 288 

1988; Congdon et al. 1994).  In Ontario, despite being classified as a species at risk in the 289 

province, snapping turtles are still subject to a harvest that is almost certainly unsustainable.  290 

Information on the long life spans and slow growth of these animals is critical for 291 
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highlighting their long-term vulnerability to impacts, and the posterior distributions reported 292 

in this paper have already been used for this purpose (Armstrong 2009). 293 

 The prediction intervals for hypothetical turtles with NB(1,0.034) as prior probably 294 

give a realistic guide to the ages of large turtles.  That is, the largest male and female 295 

snapping turtles in our population are probably 30-190 years old with a best estimate of about 296 

80.  Ten of the recaptured turtles had median age estimates > 190 years, but the  297 

credible intervals all ranged < 190 except for one extremely large (35.7 cm) female that 298 

showed no detectable growth over 14 years.  In addition, an underlying assumption of these 299 

estimates is that the individual variation in growth detected during the study can be 300 

extrapolated back throughout the turtles’ lives.  This assumption may be questionable when 301 

the age estimates are many times greater than the duration of the study.  Even 190 years may 302 

seem an implausibly long life, but it is important to keep in mind that turtles are particularly 303 

long-lived animals (Shine and Iverson 1995), and that the study population was at the 304 

northern edge of its range where the animals are only active for about 5 months of the year. 305 

 Future attempts to estimate age from size must continue to account for individual 306 

variation in growth parameters, and for long-lived ectotherms should also account for 307 

biphasic growth and use appropriate priors for expected age distributions.  As noted by Eaton 308 

and Link (2011), Bayesian hierarchical modeling frameworks facilitate flexible model 309 

structures allowing for individual variation, but also accommodate multi-model inference and 310 

assimilation of independent data sets into a single framework.  Therefore, an obvious step for 311 

advancing size-based aging is to assimilate the data with those from other techniques such as 312 

growth ring counts.  Given that there are many different methods for aging animals but most 313 

of them are problematic, the ideal approach will be to incorporate all relevant data for a 314 

species into a unified framework that fully accounts for the error associated with each 315 

technique.  316 
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FIG. 1. Posterior age distributions for hypothetical snapping turtles of different sizes.  Open 

circles show medians for large (> 24 cm) females, and filled circles show medians for large 

males or small turtles of either sex.  Error bars show 95% prediction intervals.  Likelihoods 

were based on a growth model fitted to data collected from 317 turtles over 34 years, using 

three different prior distributions: a) a uniform age distribution with maximum age of 500 

years; b) an age distribution that would be found in a stable population with annual survival 

of 0.966 (typical of turtles > 20 cm), and c) an age distribution that would be found in a stable 

population with annual survival of 0.754 (average annual survival of smaller turtles).  Note 

the different scales on the y-axis. 

 

FIG. 2. Posterior distributions for age at first capture for 293 snapping turtles of unknown age 

that were captured on at least two occasions.  Likelihoods are based on the same growth 

model as for Fig. 1, but with individual distributions for growth parameters.  Open circles 

show females, and filled circles show males or small (< 20 cm) turtles of unknown sex. Other 

conventions are for Fig. 1. 

 

FIG. 3. Effect of prior on posterior age distributions for (a) hypothetical turtles captured on 

one occasion, and (b) real turtles captured on 2-25 occasions.  Values show the proportionate 

reduction in median age when the prior was shifted from NB(1,0.034) to NB(1,0.256) (see 

Figures 1-2).  Open circles show females, and filled circles show males or small (< 20 cm) 

turtles of unknown sex.  

 

FIG. 4. Reconstructed growth curves for snapping turtles of unknown age.  The age of each 

turtle at first capture was set to the median of the posterior distribution generated using 
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NB(1,0.034) as the prior distribution (Fig. 2b).  Gray lines show females, black lines show 

males, and dashed lines show turtles of unknown sex. 
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